Interior Estimates and Longtime Solutions for Mean Curvature Flow of Noncompact Spacelike Hypersurfaces in Minkowski Space

نویسنده

  • KLAUS ECKER
چکیده

Spacelike hypersurfaces with prescribed mean curvature have played a major role in the study of Lorentzian manifolds Maximal mean curvature zero hypersurfaces were used in the rst proof of the positive mass theorem Constant mean curvature hypersurfaces provide convenient time gauges for the Einstein equations For a survey of results we refer to In and it was shown that entire solutions of the maximal surface equation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$

Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

‎Spacelike hypersurfaces with constant $S$ or $K$ in de Sitter‎ ‎space or anti-de Sitter space

‎Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and‎ ‎oriented spacelike hypersurface in a de Sitter space or an anti-de‎ ‎Sitter space‎, ‎$S$ and $K$ be the squared norm of the second‎ ‎fundamental form and Gauss-Kronecker curvature of $M^n$‎. ‎If $S$ or‎ ‎$K$ is constant‎, ‎nonzero and $M^n$ has two distinct principal‎ ‎curvatures one of which is simple‎, ‎we obtain some‎ ‎charact...

متن کامل

Translating Solitons of Mean Curvature Flow of Noncompact Spacelike

In this paper, we study the existence, uniqueness and asymptotic behavior of rotationally symmetric translating solitons of the mean curvature flow in Minkowski space. We also study the asymptotic behavior and the strict convexity of general solitons of such flows.

متن کامل

A sharp height estimate for compact spacelike hypersurfaces with constant r-mean curvature in the Lorentz–Minkowski space and application

In this paper we obtain a sharp height estimate concerning compact spacelike hypersurfaces Σn immersed in the (n + 1)dimensional Lorentz–Minkowski space Ln+1 with some nonzero constant r-mean curvature, and whose boundary is contained into a spacelike hyperplane of Ln+1. Furthermore, we apply our estimate to describe the nature of the end of a complete spacelike hypersurface of Ln+1. © 2007 Els...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003